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The superoperator transformation theory developed by the Brussels school is applied 
to quantum systems with discrete spectra. In the case of nondegeneracy of the spectra, 
there is no difficulty in obtaining explicit expressions for the most important super- 
operators in terms of the unitary operator which diagonalizes the Hamiltonian. The 
degenerate case presents special problems which are studied in detail. 
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1. I N T R O D U C T I O N  

In recent work in nonequilibrium statistical mechanics, a transformation theory has 
been developed for the Liouville-von Neumann equation in terms of"superoperators" 
which act on the density matrix. (1,~,11) These superoperators have been extensively 
studied within the context of the perturbative approach of the Brussels school in 
several papers, to which reference can be found in Refs. 2,11. It is perhaps appropriate 
to give a short resume of how these operators appear in statistical mechanics. 

The mechanics of a system in the superoperator formalism are expressed in terms 
of operators acting on the Hilbert-Schmidt space ~o of density matrices. We solve 
the Liouville-von Neumann equation 

iSp/St = Lp f o r  p E 

1 Center for Statistical Mechanics and Thermodynamics, Austin, Texas. Present address: Facult6 
des Sciences, Universit6 Libre de Bruxelles, Bruxelles, Belgium. 

135 



136 J. Rae and R. Davidson 

by means of the resolvent operator (z -- L) -1 of the Liouville operator k to obtain 

p(t) = U(t) p(0) = (1/2~ri) f e-~t(z -- L) -1 p(0) dz 
J C 

where C is the Bromwich contour parallel to the real axis of z and above all singulari- 
ties of the integrand. In some suitably chosen representation, the above equation is 
applied separately to the diagonal part, po, say, of the density matrix and the off- 
diagonal part pv �9 
The perturbative development of this equation in terms of the basic collision operator 
~(z) and associated irreducible operators (see Ref. 1) yields the approximate long- 
time solution ri(t) as follows: 

( ri0(t)~ = ( e -ie~tA e - i ~ t A D  ]/po(0)] 
rib(t)! \Ce-ie~tA Ce-ier 

This can be rewritten more compactly as 

ri(t) ----- Y(t) p(O) 

where the superoperator y satisfies the semigroup property 

y-(t) y-(t') = y-(t + r);  t, t' >~ o 

Of particular interest is the limiting case 

[1 = lira Y-(t) 
t ~ O +  

From the above, V1 is a projection operator which can be written 

?2~ 
The semigroup property of y-(t) and idempotent property of 17 are equivalent to, and 
generally proved via, the identity 

A 2 § A D  �9 C A  = A 

linking the basic operators of the theory (see Ref. 3). 
The asymptotic diagonal part of p is given by 

rio(t) = e-'~r + D)p(O) ----- e-~r ) 

It is interesting to look for a transformation which will render the generator of 
the evolution operator Hermitian. Accordingly, we introduce a superoperator X and 
consider 

~o(t) = X-1/~o(t) = [exp(--iX-lf2r 

It has been shown m that X-lf2r is Hermitian if X is any operator such that 
XX t = A (X* being the Hermitian conjugate of X). A superoperator X satifying this 



Quantum Systems with Discrete Spectra 137 

and certain subsidiary conditions can be calculated order by order frolyl a perturbation 
series and, on the basis of this, it has been suggested (~,9~ by Mandel and Turner that 
such a X satisfies the equation, in terms of a coupling parameter ~: 

aX/aA = --AD(aC/aA) X. 

It is important for the understanding of the significance of the above super- 
operators to have explicit representations of them in simple cases; and this is most 
easily achieved in certain problems for which nonperturbative quantum mechanical 
solutions are available. 

To this end, we consider quantum systems described by a Hamiltonian 

H =  Ho + AH1 

where the spectra of both H0 and H are assumed to be discrete, and the spectrum of 
H is further taken to have no finite limit point, that is, there is to be a positive lower 
bound on the differences ]En -- Em ], say, between the distinct eigenvalues of H. 
This latter requirement is not satisfied, for example, by the bound states of the 
hydrogen atom. For systems which do satisfy the above conditions, there exists a 
unitary transformation U which makes HD = UHU -~ diagonal in the basis of eigen- 
vectors of H o . Thus, if one represents the eigenvectors of H0 by ] n}, n = 0, 1,..., 
then 

HD In} = E~ J n} 

where the E~ are the eigenvalues of H. In terms of the eigenvectors 1 4~n}, say, of H, 
the operator is given by 

u = Y~ I n) ( r  I (1) 

For simplicity at the moment, H and Ho will be assumed each to have a nondegenerate 
spectrum, although this requirement will be relaxed later. In accord with the usual 
practice, the diagonal elements of H0 in the representation of the 1 n} will be chosen 
equal to those of H. 

If  p belongs to Se, we introduce the superoperator V by 

Vp = UpU -1 (2) 

where U is the unitary transformation (1). With the usual scalar product on 5e 

(Pi, P2) = Tr pi+p2 

it is easily seen that V is a unitary operator. The mechanics in ~ are generated by the 
Liouville-von Neumann operator L, defined by the relation 

Lp = [H, p] 

The operator VLV -I can be written explicitly in the I n}-representation: 

VLV-Ip = U[H, U-lpV] V -1 = [ H a ,  p] 
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and 

( m  l VkV-*o [ n)  = (E,,~ -- E~)(rn l p [ n)  (3) 

for any p in s This result essentially solves the dynamical problem in ~ ,  since the 
time development of a density matrix p is given by 

p(t) = (1/2~ri) f c e-~"t(z - -  L)-I p(0) dz 

= (1/27ri) V -1 f c  e - ~ ( z  --  VLV-1)-~ Vp(0) dz (4) 

The expression (4) can be made explicit with the aid of equation (3). We shall require 
a third basic superoperator P which maps a matrix p in ~o into the matrix consisting 
only of the diagonal elements of p in the [ n)-representation: 

(m] Pp [ n)  = @ ! p l n)  S~,n (5) 

It is simply verified that P is a projection operator. 
In the next section, we examine and obtain explicit expressions for the long-time 

or asymptotic operators in the general theory, for the case of nondegenerate spectra. 
In Section 3, the matter of inverse operators is discussed, and it is shown that the 

assumption that these exist leads to the usual equations of the general theory. The 
difficulties which appear when the spectrum is degenerate are pointed out in Section 4, 
where a method is suggested to overcome these. 

2. A S Y M P T O T I C  O P E R A T O R S  

The general theory of Ref. 2 gives a prescription which yields the approximate 
density matrix/5 to describe the long-time behavior of a statistical system (in this 
case, it will be the ergodic average): 

/5(0 = Y(t) p(0) = (1/2zri) J Q0 e-i~(z --  L) -1 O(0) dz 

where ~0 is a contour obtained by closing the Bromwich contour C about the point 
z = 0 excluding all other singularities of the integrand. Our assumption that the 
eigenvalue differences I En -- Em] have a positive lower bound implies that z = 0 
is not a limit point of the spectrum of 1., and so the contour 70 is well-defined and 
encloses only the zero eigenvalue of k. From this, it follows at once that tS(t) is in fact 
independent of t, that is, 

/5(0 = / 5 ( 0 )  = z ( 0 ) p ( 0 )  = np(0)  (6) 

where 

F1 = (1/27ri) ~ (z -- L) -1 dz 
0 
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The operator rl is the projection operator onto the null space of k (just as P is for 
L 0 , the Liouville operator corresponding to H0) and it projects out the constant part 
of  p. A more revealing expression for this operator can be found as follows: 

I-I = (1/2~'i) [ (z - -  L) -1 dz = (1/27ri) V -1 f (z - -  V L V - 1 ) - I V  dz 
, )  

The interchange of the operations V -~ and J'vo is admissible here since V -~ is unitary 
and hence bounded and since (z -- VLV-0 -~ is well-defined and bounded for z on 70- 
Now, from Eq. (3) there results 

<rn l(z -- V L V - 0  -1 p J n) = {1/[z -- (E,r~ -- E~)]}<m I P I n> 

and thus 

(m I (1/2r f dz ( z  - -  VLV-1)-Ip ] n) = <n !p in> 3~,n (7) 

This shows that 

(1/27ri) f~0 dz  (z - -  VLV-1) -1 = P (8) 

the projection operator defined by Eq. (5). In this way we obtain the very useful 
relation 

n = v - I P V  (9) 

It is useful at this point to introduce the projection operators Q = 1 - P  and 
(1 = V-~QV with the properties 

Q2 = Q, ~e = (1, QP = PQ = 0, VIF1 = (11-1 = 0 

all four projectors being self-adjoint. It is convenient from the point of view of the 
general theory ~2,m to decompose the operator VI into four parts, conventionally 
labeled as follows: 

A = PF1P ---- PV-~PVP; AD = PF1Q = (CA) 1 

CA = Q n P ;  C A D  = Q n Q  (10) 

As regards this notation, it is not obvious at this stage that CA, for example, is the 
product of A with another operator C. However, as discussed later, in Section 3, 
when the inverse operator A -~ exists, the operators C and D are well-defined. Since, 
for the moment, C and D will not occur other than in these expressions, the symbols 
CA, AD, CAD may be considered just as complicated labels for the three operators 
defined by Eqs. (10). The identity involving these operators, 

A = A ~ + A D  �9 CA 

which is widely used in the general theory (see, for example, Ref. 3), can be proved 
using our definitions (10): 

A 2 § A D  �9 CA = PI-IPI-IP + PFIQI-IP 

= Prl2P = PI'IP = A ( l l )  
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A further important use m of A in the general theory is to express the evolution of the 
diagonal elements of the asymptotic density matrix/5 when the initial density matrix 
is a purely diagonal p0(0): 

rio(t) ~= Pri(t) = e-ite~Ap0(0) 

In view of Eq. (6), this shows that for the special systems under consideration 

/ ~ A  = 0 (12) 

The operator A has an attractive factorization property. Among operators X such 
that A ----- XX*, one possible choice is obvious from Eq. (10): 

X ----- PV-W (13) 

Other choices can be obtained from this by multiplying on the right by an arbitrary 
unitary superoperator. However, the operator X of Eq. (13) is of special interest 
since it has the further property 

XH~) = H0 (14) 

This can be seen readily in the I n}-representation: 

(I [ XHD I k )  = O if l =/= k 

(l  l XHr, l l } =  ~ (l  l U -l  t k ) ( k  l U l mF(n l U -l  l k ' ) ( k '  B U I l ) (m  l H I n) 
k k ' m n  

= < l l g l l }  = ( l l H o l l }  

from Eqs. (2), (5), and (13). 
This factorization of A immediately suggests that one apply the same argument 

to V1 itself, for which 

n = V-IPV = (V-IP)(V-Ip) * = (PV) ~ (PV) 

The operator PV is called '2 by Mandel (~) and is used extensively in his analysis of 
transformation theories. By using explicitly the fact that V is the diagonalizing trans- 
formation for H, and a version of the Hellman-Feynman theorem, he has shown in 
the paper quoted that ~7 satisfies 

~9/~ = 9 ~n/~A (15) 

which is equivalent to the Mandel-Turner equation, as shown in Section 3. 
This result may easily be proved in the present notation by using the Hellman- 

Feynman theorem in the form 

PV(cqV-1/c~A) Pp = 0 

for any p in 5r which is verified most simply by taking matrix elements. 
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We conclude this section by giving component elements for some of the more 
important superoperators in terms of the matrix elements of U. From Eq. (9), 

<i i Iqp I J> = ~ (m  I U I i ) * (m  I U l j ) ( m  ] U I k>(m l U I l )* (k  [ p [ l) 
m!c~ 

where the asterisk denotes a complex conjugate. This can be written in the tetradic 
form 

(ij} I"1 1 k l )  = ~, (m [ g [  i )* (m  ] U [ j ) (m ] U[ k ) ( m  [ U} l)* (16) 

In the same notation, 

( i j l  A I k l )  = 8ij~k~ ~ ](m [ U Ii)I e I(m I U I k)[ z (17) 

and 
( i j  { X [ k l )  = 3i~ 3kz I(k P U I i)l ~ 

These expressions will be useful in Section 3. 

(18) 

3. T H E  I N V E R S E  O P E R A T O R S  

It is important for the general theory (1) that the inverse operators A -~, X -1 
exist. They are needed both for the physical interpretation of the theory and for the 
justification of writing the equations (10) in the form given and regarding the operators 
C and D as well-defined. We examine this question here, and concentrate on the 
operator X, since the existence of X -1 implies that of A-L For simplicity, only the 
nondegenerate case will be considered in this section. 

The superoperator X was introduced in Eq. (13) as 

X = PV-W 

which is not a useful form for present purposes. The presence of the projector P 
renders it virtually impossible to make any general statement on the existence of an 
inverse. Fortunately, we have an explicit matrix representation of X which can be 
obtained from Eq. (18). The elements of X which are not trivially zero can be written 
as a matrix with elements 

( i l  X IJ} --= ( i l l  X IJJ) (19) 

= [(Jl U] i)[ 2 

From this form, it is clear that the existence of X -1 is not automatic, since it is simple 
to construct unitary operators U which lead to a singular matrix for X which accor- 
dingly has no inverse. Thus, it must be made as a separate assumption that for most 
systems of physical interest the inverse operator exists, and then this matter should be 
verified for each example individually. (A simple case is treated in a forthcoming 
paper by the authors. (sl) 
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If it is assumed that X -1 does indeed exist, some of its properties can now be 
examined. By Eq. (19), the matrix for X has only nonnegative elements, and further, 
since U is unitary, 

( i l  X l J} = 1 = ~ ( i l  X I J} (20) 
i j 

X is therefore a doubly stochastic matrix with all its elements less than or equal to 
unity. X -~ also satisfies the relation (20), but cannot have the property that all its 
elements lie in the interval [0, 1] unless all these elements are either zero or unity. In 
fact, except in this latter case, the identity 

~, (i[  X kJ}(J[ X-1 ] k) = ~i~ (21) 
J 

shows that for each k at least one of the ( j [  X -1 i k),  j = O, 1,..., is negative, and 
further, that for each k, at least one choice of j gives ( J i  X-~ [ k} > 1. The first of 
these remarks follows at once from Eq. (21) by choosing any i different from k. For 
the second, suppose on the contrary that ( j ]  X -1 I k} ~< 1 for every j and let the 
positive matrix elements be labeled by j ~ / ,  and the negative ones by j ~ d. Then, 

1 = ~, (k l  X t.i}(JI X-1 I k} 
J 

= ~ (k  ] X I j } (J  ] X-1 I k> - ~ <k I x l.J> I f j  I x - '  I k}l 
yel deY 

~< ~ (kLXlj}- ~ (klXlj} [(JlX-llk}l 
jel  j sJ  

< Z ( k ] X l j }  
all j 

= 1  

which is a contradiction. 
As noted above, the existence of X -1 implies that of A -1 and since, by Eq. (17), 

A is a symmetric, doubly stochastic matrix, A -1 shares the above properties with 
X -1. 

These properties give rise to some interesting conclusions. In the general theory, 

ri0(t) = x-%(t) 

is regarded as the diagonal part of a "dressed" or "physical" density matrix obtained 
from an original "unphysical" p. From Eqs. (6) and (10), 

rio(t) = rio(0) = X - 1 A ( 1  -~- D ) p ( 0 )  

= X*(1 q- D)p(O) 

If  a pure state is chosen for ri, the above properties of the inverses show that 
(1 + D) p(O) has at least one negative element and at least one element greater than 
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unity, which is impossible if Dp = 0. In particular, a pure state for fi can arise only 
from a p(0) which has Qp(0) =/= 0, i.e., the initial state must have correlations present. 

When the operators A -1, X -1 exist, the general theory can proceed in the usual 
way. The operators C and D of Eqs. (10) are well-defined, and the identity (11) gives 
at once 

A -1= 1 - F D ' C  

Further, Eq. (12) now reduces to .Q~b = 0, whence ~b = 0. Finally, it is seen that the 
factorisation of F1 can now be written 

whence 

n = 9f9 = (1 @ C ) X X t ( l  @ D) 

'2 ---- Xf(1 -F D) (22) 

If  we decompose all superoperators in the fashion of Eqs. (10) and write the compo- 
nents as a 2 • 2 matrix of operators, then, with the help of the result (22), the two 
sides of Eq. (15) may be written as follows: 

and 

~2 aFI/aA (X* aA = -~- @ X*D (CA) 
0 

X* ~ (AD) -F 0X*D ~ (CAD)) 

Hence, Eq. (15) is equivalent to : 

cqXt/cq,~ ---- Xt(OA/cqA ,-F Dc~[CA]/#A) 

or else, since X* = X-1A, 

cqX-Z/cqZ = X-lAD cqC/cq,~ 

In this form, the result is usually called the Mandel-Turner equationJ 9) 

4. T H E  D E G E N E R A T E  CASE 

In this section, we shall examine the extra difficulties which arise in an attempt to 
treat degenerate systems by the methods of Section 2. Thus, we now admit the possi- 
bility that different eigenfunctions 1 Ei~ say, of H0 may correspond to the same 
eigenvalue Eft, and different eigenfunctions I E~nj) of H to the same eigenvalue Ej .  

The first place where a difficulty occurs is in the defining equation (5) for P. This 
definition as it stands would suffice for the purposes of this paper, but from the point 
of  view of the general theory, in particular with regard to the perturbation expansion 

822/3/2-r 
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of Ref. 1, it must be changed somewhat. An examination of this perturbative scheme 
reveals that a useful P should have the following properties: 

PL 0 = LoP = 0 (23) 

PLP = 0 (24) 

(z -- Lo) -1 Qp contains no terms proportional to z -1 (25) 

The first two conditions (23) and (24) are satisfied by the definition (5), but not the 
"irreducibility" condition (25) when H 0 is degenerate. 

This last condition, however, is necessary for the usual perturbation expansion 
to have the meaning ascribed to it in the derivation of the generalized master equation. 
It can be noted that in order to satisfy condition (25) it is necessary and sufficient that 
the projected space P~e be the entire null space of L 0 , that is, that P be defined by 

(Eflm~I PplEflnj) : 0 if i : / : j  

(gi~ I Pp l E~~ = (Eflmi l p l Ei~ (26) 

However, this choice of P does not in general satisfy condition (24), so that in the 
operators used above and in any kinetic equations derived in terms of them, explicit 
account must be taken of the operator PLP. (This is akin to a difficulty in treating 
spatially inhomogeneous classical systems. (~)) A way to avoid this difficulty is to 
modify the decomposition of H as H0 -F ?till,  along lines suggested by the methods 
of degenerate perturbation theory in quantum mechanics, in such a way that P can be 
constructed to satisfy all three conditions (23)-(25). The first step is to proceed from 
the basis l Ei~ in each degenerate subspace to a new orthonormal basis [ Ei~ 
which has the property (Ei%i] 1tl I Ei~ = 0 unless ~ = /3 i .(") A new decom- 
position H = H o' § ;~H~' is now made, where Ho' is the diagonal part of H in the 
new basis: 

(Ei%~ I Ho' '. E5~ = aija~,,,[Efl § (Ef l~  l ~tHl[gi~ 

and where//1'  accordingly satisfies: 

(Ei~ ] Hi' I Efl]3~} : 0 if i = j 

If  we further assume that the change of basis has introduced no further degeneracy 
in H0', that is, if the equality 

implies that i ---- j, then we can define a projector P which projects onto the entire 
null space of the superoperator L 0' = [H0',...]: 

<Ei~ ] Pp I Efl/3v> = ~ij<EiOc~i [ p I Efl/3a> 

if 

(Ei~ ! aHl  f Ei~ = (Eflfij l ZHl i Efl[3j} 
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and is equal to zero otherwise. It is easy to verify that P defined in this way satisfies 
the three conditions (23)-(25) with k 0 replaced by ko'. 

The second place where a difference occurs between degenerate and nondegenerate 
cases is Eq. (8), which need no longer be valid. A degeneracy in H o as treated above 
affects the complexity of calculation but cannot, of course, affect the final answers. 
A degeneracy in H is another matter and leads to the breakdown of Eq. (8). 
Since notation can be a problem here, we revert to labeling the eigenvectors of Ho 
(or H0', as the case may be) by I n) and shall say that ] n) belongs to Ei,  an eigenvahie 
of H, if 

UHU-1] n) = El In) 

Each I n) thus belongs to some E~, but if H is degenerate, more than one [ n) may 
belong to a given E~. In this latter case, Eq. (7) should be replaced by 

(rn ] (1/2~ri) f ,  dz(z -- VLV-~)-Ip ] n> = (m I P I n) 
0 

provided that [ m) and [ n) belong to the same E~, and zero otherwise. A new projec- 
tion operator S may be defined: 

S = (1/2~ri) f (z - -  VLV-I) -1 dz 
Y0 

which in general need not be related to P. Analogously to Eq. (9) there results 

(27) 

since 

and the program must now be developed in terms of two projectors P and S. If  H is 
nondegenerate, then exactly one In) belongs to each E~, and S, as defined above, 
reduces to the diagonal projection given by Eq. (5). The operator X can still be defined 
as PV-1S, and has the properties 

and 

X X * = A =  PFIP 

XH~ = Ho' 

(m I PV-1SHo I n) ---- ~ (m I u -11 l)(II HD I l)(1I U1 n) 

-~ <m I HI n> 

provided that ] m> and I n> both correspond to the same eigenvalue of H0', and zero 
otherwise. 

From the definition of Ho" then, this last quantity is just <m [Ho'] n>. There 
remains, however, a point of difference from the nondegenerate case. Although we 
can define an operator ~7 in the same way as before, namely 

"7 = SV, ~+'~ = FI 

n = V-lSV (28) 
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it need not in general satisfy Eq. (15). Indeed, if Eq. (I 5) holds, then necessarily 

SV(~V-1/~A) S = o 

that is, 

Z [<m I g ~g-1/~ [ l ) ( l  I p I n) - (m  l p I l ) ( l  [ U 8U-1/aA ] n)] = 0 (29) 

for I m>, i n>, l l> belonging to the same E~ and for arbitrary p in s This relation (29) 
clearly cannot be satisfied unless the states Ira>, In>, I l> are identical, which is the 
nondegenerate case considered in Section 2, or unless U ~ U-I/aA is a multiple of the 
identity in each subspace spanned by the kets I m> belonging to a given eigenvalue. 
This latter condition will not hold generally, since there are simple physical systems 
for which it is untrue. An example is a two-dimensional isotropic quantum harmonic 
oscillator subject to a perturbing constant external field in a fixed direction. (For the 
operators required in this model, see Ref. 7.) 

5. C O N C L U S I O N S  

It is apparent that there is no difficulty in incorporating quantum systems with 
nondegenerate discrete spectra into the superoperator transformation theory. In the 
case of degeneracy in H0, calculational difficulties can arise in the definition of a 
suitable projector P, but these may be overcome by making a new decomposition of 
H into H0' and )~HI', according to the procedure described in Section 4. 

Other problems, not so readily disposed of, appear when H itself is degenerate. 
In order to develop a sensible theory, it seems necessary to introduce two projection 
operators P and S and retain them throughout. This permits most, but not all, of the 
theory to proceed as before. The main difference is that the Mandel-Turner equation 
no longer seems to be generally valid. It emerges clearly from Section 3 that the exis- 
tence of the inverse operators k -1 and X -~, normally assumed in the general theory, is 
by no means immediate and must be established independently for each individual 
case, Further, the mere existence of the inverse operators gives rise to some interesting 
properties. It is interesting to see these appearing in a simple way without any use of 
approximation techniques. Similar features have occurred previously in the super- 
operator theory within the framework of perturbation theory (see Ref. 10, where they 
are discussed). 
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